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Abstract
Background  Gangrenous cholecystitis (GC) is a serious clinical condition associated with high morbidity and 
mortality rates. Machine learning (ML) has significant potential in addressing the diverse characteristics of real data. 
We aim to develop an explainable and cost-effective predictive model for GC utilizing ML and Shapley Additive 
explanation (SHAP) algorithm.

Results  This study included a total of 1006 patients with 26 clinical features. Through 5-fold CV, the best performing 
integrated learning model, XGBoost, was identified. The model was interpreted using SHAP to derive the feature 
subsets WBC, NLR, D-dimer, Gallbladder width, Fibrinogen, Gallbladder wallness, Hypokalemia or hyponatremia, these 
subsets comprised the final diagnostic prediction model.

Conclusions  The study developed a explainable predictive tool for GC at an early stage. This could assist doctors to 
make quick surgical intervention decisions and perform surgery on patients with GC as soon as possible.

Key Summary
	• Using clinical data from 1006 cholecystitis patients, we developed a machine learning-based diagnostic 

prediction model to help identify patients at high risk for acute gangrenous cholecystitis.
	• During the study, the deficiency and imbalance of actual clinical data were directly addressed, leading to 

the ultimate selection of the integrated learning model XGBoost as the predictive model exhibiting superior 
performance and stability on a novel, unidentified validation set and compared to preoperative clinical 
diagnosis.

	• The model employs variables that are non-specific, readily available, reasonably priced, and appropriate for 
clinical generalization.
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Introduction
Gangrenous cholecystitis (GC) is a prevalent variety of 
complicated cholecystitis, which is characterized by pro-
gressive ischemia, necrosis, and even perforation of the 
gallbladder wall, and is the most often encountered of 
complicated cholecystitis [1–3]. GC is distinguished by a 
quick advancement of the disease, a high fatality rate and 
a poor prognosis [4]. It is reported that the incidence rate 
of GC is about 10-40% of all acute cholecystitis, and the 
morbidity and mortality rates range from about 15-50% 
[5]. Since this disease can only be diagnosed through 
pathology evidence, it is challenging to make a preop-
erative diagnosis for patients with GC, research indi-
cates that only approximately 9% of individuals with GC 
are accurately diagnosed before surgery [6]. The current 
clinical Tokyo guideline (2018 edition) defines acute cho-
lecystitis into three levels, with GC being designated as a 
second level. However, it does not provide a comprehen-
sive summary of the diagnosis and therapy specifically 
connected to GC [7]. Hence, it is crucial to develop a 
prognostic diagnostic model to assist doctors in diagnos-
ing and making informed decisions.

Multiple researches have been done to gather clinical 
data for the purpose of analyzing the risk factors of GC 
and attempting to develop an early prediction model. In 
a retrospective study, Raffee et al. discovered that GC 
patients were predominantly male, they also observed 
an increased risk of GC in patients with raised levels of 
erythrocyte sedimentation rate (ESR), leukocytes, and 
neutrophil ratio (neutrophil/leukocyte), as well as a low 
lymphocyte ratio (lymphocyte/leukocyte) [8]. Binit et al. 
found that GC had higher Hu values of gallbladder wall 
and bile in plain CT, which combined with the Hu values 
of the gallbladder wall and bile lumen, was used for the 
prediction of GC with 100% sensitivity and 75% specific-
ity when the threshold value of 35 Hu was reached, but 
the sample size of this study was only 23 [9]. In contrast, 
Mok et al. primarily investigated the predictive capacity 
of C-reactive protein, they found that when C-reactive 
protein levels exceeded 200  mg/dL, the positive pre-
dictive value was approximately 50%. Additionally, the 
sensitivity and specificity were 100% and 87.9%, respec-
tively [10]; KeeHwan Kim et al. constructed a prognos-
tic model utilizing age, gender, blood cell count, liver 
function, and gallbladder wall thickness in CT scans, 
the model achieved a sensitivity and specificity of 74% 
[11]. The majority of previous studies employed conven-
tional logistic regression models to predict diseases and 
had limited sample sizes, posing a difficulty for devel-
oping effective models. Simultaneously, the real-world 

gathering of clinical data on such severely ill patients is 
incomplete and imbalanced; past studies have similarly 
neglected these problems.

Artificial intelligence (AI), particularly machine learn-
ing (ML), has become extensively utilized in the medi-
cal fields in recent times due to its robust computational 
capacity. This allows it to not only analyze the correla-
tion between numerous predictor variables and outcome 
variables, but also determine the nonlinear relationship 
between each predictor [12–14]. The current predic-
tion models for GC are constructed using typical logis-
tic regression models, this restricts the investigation of 
more complex interactions among multivariate inputs 
and illness outcomes [15]. The ML model can effectively 
utilize the various clinical data with multiple parameters 
to extract crucial information. This enables the construc-
tion of a highly accurate model with a low rate of false 
negatives. Consequently, clinicians can promptly identify 
and monitor patients suspected of having GC in an early 
stage. This early detection allows for timely intervention, 
such as surgery, which ultimately reduces the mortality 
rate associated with the disease.

Therefore, the objective of this research was to cre-
ate an cost-effective predictive model for GC utilizing a 
ML technique and to design a clinical decision support 
tool by leveraging the model’s interpretability. The study 
can enhance the care and management of GC patients 
by offering physicians more precise and evidence-based 
clinical decision support.

Materials and methods
Study design and patient selection
This retrospective cohort study was approved by the Eth-
ics Committee of the Second Affiliated Hospital of Dalian 
Medical University (KY2024-006-02) and followed the 
Declaration of Helsinki. The consent form was waived 
by the review board due to the retrospective nature and 
deidentification of the data. This was a single-center, ret-
rospective, and observational study on patients admit-
ted to our center who were diagnosed with cholecystitis 
through ICD-9 code recognition and underwent chole-
cystectomy from January 2015 to May 2023, and the data 
from January 2015 to December 2022 was used for model 
training, while the data from January 2023 to May 2023 
was used as an unknown external test set to test the per-
formance of the model. This retrospective cohort study 
was registered with the ClinicalTrials ​(​​​h​t​​t​p​s​​:​/​/​r​​e​g​​i​s​t​​e​r​.​​c​l​i​
n​​i​c​​a​l​t​r​i​a​l​s​.​g​o​v​/​p​r​s​/​a​p​p​/​a​c​t​i​o​n​/​L​o​g​i​n​U​s​e​r​?​t​s​=​1​&​c​x​=​-​j​g​9​q​
o​4​​​​​​)​.​ Data has been reported in line with STARD [16] and 
STROCSS [17] criteria.

Keywords  Gangrenous cholecystitis, Machine learning, Integrated learning, Data imbalance, Diagnostic predictive 
model
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Identification of research variables and data collection
To alleviate the impact of invalid variables on model cal-
culations, it is imperative to find variables that are scien-
tifically legitimate. Initially, we employed the subsequent 
search algorithm on the pubmed: (((((((predict) OR pre-
dictive factors) OR risk assessment) OR diagnosis) AND 
gangrene) OR gangrenous) AND cholecystitis) AND 
((“1980/01/01“[PDAT]: “2023/09/31“[PDAT])) to search 
for relevant literature over the years, remove duplicates 
to select statistically significant variables in each study, 
and then combine with the real-time existing items in 
the testing system of our center to delete and eventu-
ally incorporate the following studies Variables: Base-
line parameters included: gender, age, body mass index 
(BMI), history of hypertension, diabetes mellitus, history 
of cardiovascular and cerebrovascular diseases (such as 
coronary heart disease and stroke), history of anticoagu-
lants use, and history of abdominal general anesthesia. 
The laboratory indicators were: WBC, Neutrophil(NEU), 
Lymphocyte(LYM), Platelet, Neutrophil to Lymphocyte 
ratio(NLR), Platelet to lymphocyte ratio(PLR), Aspartate 
aminotransferase (AST), Alanine transaminase(ALT), 
Gamma-glutamyltransferase(GGT), Total bilirubin, 
D-dimer, Fibrinogen, and the presence of hypokalemia 
or hyponatremia upon admission. The imaging indi-
ces assessed in the abdominal CT or ultrasound report 
conducted after admission are the length, width, and 
wall thickness of the gallbladder. Other pertinent clini-
cal information includes the body temperature and heart 
rate recorded upon admission. In order to compare the 
results between the GC and No-GC groups, we also col-
lected the duration of surgery, intraoperative blood loss, 
and days of hospitalization. All the patients did not use 
antibiotics before admission, all the blood-related tests 
and imaging data were completed before the use of 
antibiotics.

The main reference standard for the preoperative diag-
nosis of GC by doctors at our center is from the Tokyo 
Guidelines 2018 edition [7]. GC was defined by the pres-
ence of surgical indications such as gangrene or per-
foration of the gallbladder wall that could be observed 
without the use of magnification, as well as confirmation 
through pathological examination.

The following are the inclusion and exclusion criteria 
for data collection:

Inclusion criteria: (1) patients diagnosed with acute 
cholecystitis or acute exacerbation of chronic cholecys-
titis in our hospital and receiving complete clinical treat-
ment in our hospital; (2) performing cholecystectomy; 
(3) having complete and searchable clinical data, such as 
patient’s age, surgical records, and hospitalization days.

Exclusion criteria: (1) patients who have previously 
diagnosed with chronic cholecystitis, this time for elec-
tive surgical treatment; (2) patients who have previously 

been diagnosed with acute cholecystitis and have under-
gone Percutaneous transhepatic gallbladder drainage 
(PTGBD), this time for elective laparoscopic cholecys-
tectomy; (3) patients who have other acute biliary and 
pancreatic system-related diseases, such as obstructive 
jaundice caused by choledochal stones, acute cholangitis, 
acute pancreatitis, etc. (4) patients who underwent addi-
tional surgeries such as choledochotomy and lithotripsy, 
choledochoscopic exploration and lithotripsy, bile-intes-
tinal anastomosis, appendectomy, etc.; (5) those with 
incomplete data; A total of 1006 patients were included 
in the study, with 109 of them used as an external test set.

Data transformation and normalization
The data utilized for constructing ML models must 
exhibit data integrity, with no missing values, and stan-
dardization in terms of scale. The predictor variables with 
missing values in this study are D-dimer, BMI, gallblad-
der imaging data. The missing values for D-dimer and 
gallbladder imaging data are primarily due to variations 
in the practices of different doctors in recommending 
medical tests. Additionally, some patients were referred 
from emergency rooms or other hospitals, and during 
their second visit to our hospital, relevant tests were not 
conducted to avoid duplication. Furthermore, the results 
of tests conducted in other hospitals are not recorded in 
our hospital’s system. The missing values for BMI are a 
result of some patients being bedridden and unable to 
have their body weight measured. The aforementioned 
causes for missing data are random and varied, make it 
unsuitable to use mean interpolation or plurality interpo-
lation, and multiple interpolation is currently one of the 
predominant methods extensively applied, which utilized 
multi-chain equations to interpolate missing values [18]. 
We used the MICE package in R4.2.3 [19] to interpolate 
the raw data and produce the complete dataset accord-
ing to the approved criterias. Furthermore, the recently 
developed MIDASpy package by Lall, a researcher 
from the UK, utilizes deep learning to interpolate miss-
ing values. The authors of the study demonstrated the 
superiority of this technology by comparing its interpo-
lation results with those of other multiple interpolation 
programs, such as MICE [20]. As a result, we also used 
interpolation to estimate the missing data based on the 
approved criteria. The missing values are all continuous 
numerical variables, to measure the disparity between 
the interpolated complete dataset and the original data-
set, we emloyed the Normalized Root Mean Square Error 
(NRMSE) and selected the complete dataset with the 
smallest difference for subsequent model construction. 
Finally, the data standardization was performed using 
z-score standardization, a regularly used and widely 
applied method. This was done to remove the impact of 
scale differences between variables and to enhance the 
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computational convergence of the model [21]. The for-
mula was as follows: where x is the original value of the 
sample, µ is the score mean of the overall sample, and σ is 
the standard deviation of the overall sample:

	 z = (x − µ)/σ� (1)

Model construction and feature selection
This study used Stratified 5-fold cross validation to verify 
that the distribution of data in the training and valida-
tion sets is consistent with that of the original data [22]. 
Based on the correlation analysis results from the pre-
ceding part, Decision Tree, SVM, Random Forest(RF), 
XGBoost, AdaBoost were constructed by excluding the 
covariates and assessing the models’ fit using them. A 
combination of Grid Search and manual parameteriza-
tion was used to optimize the model’s parameters. Addi-
tionally, the learning curve of the model was plotted to 
assess the fit of models, the feature variables were ranked 
using RFECV to rank the tuned models [23]. The SHAP 
value is a technique employed to interpret deep learning 
models by quantifying the feature variables within these 
models, which are often considered as “black boxes” 
[24]. The SHAP module contained interpreters capable 
of interpreting tree models like RF and XGBoost, so we 
generated the SHAP values for the XGBoost model to 
determine the importance ranking of the variables in the 
model. We then combined this ranking with the impor-
tance ranking of the feature variables in the RF and SVM 
models to synthesize and select a subset of features. The 
aforementioned procedures were executed utilizing the 
scikit-learn package in Python (version 3.9, Python Soft-
ware Foundation, https://www.python.org/).

Data enhancement and model evaluation metrics
This study is a binary classification problem where the 
number of observations in the No-GC group is signifi-
cantly greater than that in the GC group. This situation, 
where one class has more observations than the other, 
is referred to as data imbalance [25]. In fact, the medi-
cal field has encountered data imbalance issues, such as 
cancer detection, identification of rare symptoms, etc., 
which requires picking out only positive samples from 
a huge pool of normal values. This work involved the 
construction of the Random Under-Sampling, Random 
Over-Sampling, and Synthetic Minority Over-Sampling 
Technique (SMOTE) algorithms, along with it respective 
versions: Borderline-SMOTE, SVMSMOTE to resample 
the data. For the imbalanced dataset, we used Balanced 
accuracy [26] and the standard metrics of the confusion 
matrix: Recall, Precision, F1 score for evaluation. The 
specific formulas for these metrics are provided below 
(See Supplementary Table 1, Additional file 1). Given that 

our model’s primary objective is to accurately detect pos-
itive samples, often known as GC, our main focus should 
be on maximizing the Recall value. Furthermore, we also 
generated the precision-recall (PR) curve for each model. 
This metric is particularly responsive to the minority 
class of positive samples when dealing with imbalanced 
data [27].

To facilitate the comparison between the final model 
and the preoperative diagnosis, Accuracy, Specificity, 
Sensitivity, and AUROC (area under the receiver operat-
ing characteristic curve) were calculated.

Statistical analysis
Continuous numerical variables were first analyzed by 
Shapiro to determine if they conformed to the normal 
distribution, if they did, the mean ± standard deviation 
was used, otherwise, the median (interquartile spacing) 
was used to describe them. Percentages were used to 
characterize subtypes of variables; Chi-square tests were 
employed to assess the disparities between two groups 
for all categorical variables; Two-tailed t-tests were used 
for continuous numerical variables if they were nor-
mally distributed, and the Kruskal-Wallis rank-sum test 
was used for them otherwise; To exclude the effects of 
covariates in constructing the model, the correlation test 
between variables was used as follows: spearman correla-
tion coefficient was used between continuous variables; 
Cramer’s V correlation coefficient was used between cat-
egorical variables; point-biserial correlation coefficient 
was used between continuous variables and categorical 
variables. The above statistical analyses were performed 
using Rstudio version 4.2.3. A p value of < 0.05 was con-
sidered to denote statistical significance.

Results
Clinical characteristics of patients
The workflow of this study was shown in Fig.  1. 897 
patients were included in the study, divided into No-GC 
group (n = 689) and GC group (n = 208), with a total of 468 
(52.2%) male patients and 429 (47.8%) female patients. In 
the GC group, patients were found to be older (64 vs. 56 
years, p < 0.001), predominantly male (68.3% vs. 31.7%), 
and had higher WBC (13.49 vs. 6.82, p < 0.001) and NLR 
(13.01 vs. 2.56, p < 0.001); elevated D-dimer (1.02 vs. 0.54, 
p < 0.001) and higher NLR (13.01 vs. 2.56, p < 0.001) and 
increased fibrinogen (5.61 vs. 3.71, p < 0.001) demonstrat-
ing that coagulation was also affected; liver function was 
also elevated but only the difference in total bilirubin was 
statistically significant (24.30 vs. 15.28, p < 0.001); admis-
sion was more likely to be associated with hypokalemia 
or hyponatremia (58.1% vs. 41.9%, p < 0.001); and admis-
sion to the hospital was more likely to be associated with 
hypokalemia (58.1% vs. 41.9%, p < 0.001); In addition, 
the gallbladder was likely to have an overall enlarged 

https://www.python.org/
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gallbladder wall thickening on imaging (0.50 vs. 0.30 cm, 
p < 0.001) (Table 1). Past medical history revealed that the 
No-GC group had a greater propotion of patients with a 
previous occurrence of cardiovascular disease and who 
were now using anticoagulant medications. Furthermore, 
some additional variables related to an outcome that we 
collected showed that the GC group had a longer opera-
tive time (110 vs. 75 min, p < 0.001), more intraoperative 
blood loss (10 vs. 5 mL, p < 0.001), and a longer hospital 
stay (8 vs. 7 days, p < 0.001). These findings emphasize 
the importance of promptly and accurately predicting the 
occurrence of GC.

Removing covariates and interpolating missing values
A correlation analysis was performed on the predictive 
variables of the model, which included age, WBC, NEU, 
LYM, NLR, PLT, PLR, ALT, AST, GGT, Total bilirubin, 
D-dimer, Fibrinogen, BMI, Temperature, Heart rate, 
Gallbladder length, Gallbladder width, Gallbladder wall-
ness, Sex, Hypertension, Diabetes, Cardio cerebrovas-
cular diseases, Anticoagulant drugs, General anesthesia 
surgery, Hypokalemia or hyponatremia and the depen-
dent variable Gangrenous. The results demonstrated a 
strong correlation between WBC and NEU, NLR, ALT 
and AST, and between cardiovascular disease and anti-
coagulant drug history (Fig.  2A). Considering that the 
NLR has demonstrated high research value in several 
previous studies and is highly correlated with the depen-
dent variable, and based on the p value magnitude of the 
previous statistical analyses, we decided to keep the NLR 
and removed NEU, ALT, PLR, Gallbladder length, Anti-
coagulant drugs.The correlations between the remaining 
variables were also confirmed using heatmaps (Fig.  2B). 
Following that, we interpolated the missing values by 

referring to the approved criterias of MICE, MIDASpy 
two program packages, each program package gener-
ating 10 complete datasets and calculating the mean of 
NRMSE of each missing variable, as shown in the follow-
ing table (See Supplementary Table  2, Additional file  1) 
we chose MIDASpy2 to construct the subsequent ML 
model.

Model performance
The models achieved a Balanced accuracy ranging from 
77.49% (95% CI: 70.67-85.78%) to 83.20% (95% CI: 76.31-
90.14%), while the Recall values were 59.63% (95% CI: 
47.22-75.02%)-88.00% (95% CI. 84.00-100.00%) (Table 2). 
These models have excellent performance on different 
metrics respectively, SVM achieves the highest Balanced 
accuracy, RF has the highest Recall value and XGBoost 
model has strong performance across multiple metrics.

The RF model had moderate performance with a PR 
curve and AUPRC of (75.51%, 95% CI: 62.42-86.02%), 
on the other hand, SVM exhibited the smallest dispar-
ity between the training and validation sets (79.24% vs. 
78.48%). This suggests that the SVM model may not be 
suffering from either overfitting or underfitting. The 
XGBoost and AdaBoost models showed good perfor-
mance on the training set, but there was a noticeable 
difference in performance compared to the validation 
set (83.71% vs. 77.99%, 83.25% vs. 77.34%), suggesting 
that the models may be at danger of overfitting (Fig. 3). 
Consequently, we graphed the learning curves of sev-
eral models mentioned above to detect the current 
level of model fitting (See Supplementary Fig.  1, Addi-
tional file 2). To avoid excessive false positives, we used 
F1 scores as the learning curve scores, and most of the 

Fig. 1  The workflow of this study and workflow of the data analysis
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level No-gangrenous Gangrenos P
n 689 208
Sex(%) Female 363

(52.7)
66
(31.7)

< 0.001

Male 326
(47.3)

142
(68.3)

Hypertension(%) 0 519
(75.3)

134
(64.4)

0.003

1 170
(24.7)

74
(35.6)

Diabetes(%) 0 591
(85.8)

170
(81.7)

0.188

1 98
(14.2)

38
(18.3)

CCD(%) 0 630
(91.4)

164
(78.8)

< 0.001

1 59
(8.6)

44
(21.2)

Anticoagulant
drugs(%)

0 669
(97.1)

186
(89.4)

< 0.001

1 20
(2.9)

22
(10.6)

General
Anesthesia
surgery(%)

0 437
(63.4)

126
(60.6)

0.507

1 252
(36.6)

82
(39.4)

Hypokalemia
Or hyponatremia(%)

0 604
(87.7)

100
(48.1)

< 0.001

1 85
(12.3)

108
(51.9)

Age,
median[IQR], year

56.00
[45.00, 65.00]

64.00
[55.00, 71.00]

< 0.001

WBC,
median[IQR], 10^9/L

6.82
[5.30, 9.21]

13.49
[10.13, 17.53]

< 0.001

NEU,
median[IQR], 10^9/L

4.32
[2.99, 7.11]

11.95
[8.36, 15.39]

< 0.001

LYM,
median[IQR], 10^9/L

1.59
[1.16, 2.05]

0.98
[0.71, 1.30]

< 0.001

NLR,
median[IQR]

2.56
[1.67, 5.27]

13.01
[7.21, 18.70]

< 0.001

PLT,
median[IQR], 10^9/L

231.00
[190.50, 274.00]

204.50
[161.75, 253.00]

< 0.001

PLR,
median[IQR]

148.86
[112.11, 196.67]

208.76
[148.75, 288.90]

< 0.001

ALT,
median[IQR], U/L

26.92
[18.00, 44.90]

31.15
[22.08, 56.15]

0.800

AST,
median[IQR], U/L

23.80
[18.62, 33.20]

29.20
[21.08, 45.23]

0.490

GGT,
median[IQR], U/L

29.70
[18.00, 76.78]

47.05
[26.00, 125.27]

0.055

Total bilirubin
median[IQR], µmol/L

15.28
[11.07, 22.40]

24.30
[16.13, 37.00]

< 0.001

D-dimer
median[IQR], ug/mL

0.54
[0.39, 0.77]

1.02
[0.66, 1.65]

< 0.001

Fibrinogen,
median[IQR], ug/mL

3.71
[3.12, 4.52]

5.61
[4.28, 7.24]

< 0.001

Table 1  Comparison of clinical characteristics of cholecystitis patients between different cohorts
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Table 2  The evaluation indicators for each model
Model Balanced accuracy Recall Precision F1 score
Decision Tree 80.46%(78.57–89.92%) 87.04%(80.00-98.12%) 50.31%(43.74–67.23%) 63.73%(57.73–78.26%)
SVM 83.20%(76.31–90.14%) 82.66%(67.65–91.67%) 60.79%(51.77–78.44%) 69.94%(59.99–80.41%)
Random Forest 82.75%(81.94–91.81%) 88.00%(84.00-100.00%) 54.25%(47.83–73.02%) 67.09%(63.41–81.63%)
XGBoost 82.49%(78.79–91.90%) 82.69%(70.58–94.12%) 58.85%(55.17–80.44%) 68.61%(63.63–83.73%)
AdaBoost 77.49%(70.67–85.78%) 59.63%(47.22–75.02%) 79.39%(66.67–92.59%) 68.07%(56.60–80.00%)

Fig. 2  The correlation heatmap between the variables. (A) Correlation Heatmap of all variables. (B) Correlation heatmap after removing collinear vari-
ables. CCD, Cardio cerebrovascular diseases

 

level No-gangrenous Gangrenos P
BMI,
median[IQR], kg/m2

24.80
[22.86, 27.68]

25.72
[23.44, 27.77]

0.060

Temperature,
median[IQR],℃

36.40
[36.10, 36.50]

36.50
[36.20, 36.90]

< 0.001

Heart rate,
median[IQR], bpm

78.00
[72.00, 85.00]

82.00
[73.00, 96.00]

< 0.001

Operation time,
median[IQR], min

75.00
[55.00, 100.00]

110.00
[80.00, 150.75]

< 0.001

Intraoperative
Bloodloss,
median[IQR], mL

10.00
[5.00, 20.00]

30.00
[10.00, 50.00]

< 0.001

Length of
Stay,
median[IQR], day

7.00
[5.00, 9.00]

8.00
[6.00, 10.00]

< 0.001

Gallbladder
Length,
median[IQR], cm

7.80
[6.00, 8.30]

8.90
[7.80, 10.00]

< 0.001

Gallbladder width,
median[IQR], cm

3.30
[2.40, 4.00]

3.90
[3.30, 4.50]

< 0.001

Gallbladder wallness,
median[IQR], cm

0.35
[0.30, 0.50]

0.50
[0.40, 0.60]

< 0.001

CCD: Cardio cerebrovascular diseases

Table 1  (continued) 
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models showed good fitting, except for the AdaBoost 
model, which exhibited slight overfitting.

Construct and validate the feature subsets
In this study, we implemented the RFECV algorithm 
(See Supplementary Table  3, Additional file  1) for each 
model and merged the importance of the feature vari-
ables that obtained from the RF and SVM models (See 
Supplementary Fig. 2A, B, Additional file 2), along with 
the SHAP values from the XGBoost model (Fig.  4). We 
identified the following seven variables as a feature sub-
set for the final construction of the decision tool: WBC, 
NLR, D-dimer, Gallbladder width, Fibrinogen, Gallblad-
der wallness, Hypokalemia or hyponatremia. NLR is 
the ratio of neutrophils to lymphocytes and, similar to 
WBC, is significantly correlated with inflammatory dis-
orders. D-dimer is a byproduct of fibrin degradation, 
whereas fibrinogen serves as a precursor to fibrin; both 
are key components of the body’s coagulation process. 
The width and wall thickness of the gallbladder indicate 
if it is enlarged or edematous. Sodium and potassium 
are the principal ions essential for cellular electrophysi-
ological activity in the body, while hyponatremia and 

hypokalemia signify environmental disruptions within 
the human organism. To test the validity of the feature 
subset, the model was re-evaluated using the above vari-
ables as presented in Table  3, and the evaluation of the 
various Indicators showed a slight decrease or no change, 
which confirms the validity of the feature subset, this 
conclusion was further supported by the results of the 
PR curves (Fig. 5). In the external test set, the indicators 
have decreased but still perform well (Table  4), except 
for RF, the AUPRC of the other models has dramatically 
fallen (Fig. 5). XGBoost, on the other hand, still performs 
well, the highest among the five models 77.87% (95% CI: 
53.11-92.55%).

Date resampling
We resampled the imbalanced data and re-trained the 
models according to the five aforementioned algorithms, 
which proved that these methods either did not improve 
the models significantly as in the case of XGBoost, or 
enhanced the predictive ability of the models on the 
training and validation sets but deteriorated their per-
formance on a new external test set, exacerbating the 
overfitting of the models. We therefore deemed these 

Fig. 3  The PR curves of each model plotted using all variables.The Training set and Validation set were generated using a standardized k-fold cross valida-
tion (k = 5)
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algorithms to be unsuitable for use in the construction 
of this predictive model. Additionally, we generated the 
PR curves for the model using various resampling proce-
dures to confirm our findings (See Supplementary Fig. 3, 
Additional file 2).

Compare with preoperative diagnosis
Furthermore, we conducted a comparison between the 
model and the preoperative diagnosis made by the clini-
cian at our center. Since the preoperative diagnosis only 
provided the final predictive label, we generated the cor-
responding confounding matrix and calculated the corre-
sponding index (Table 5). XGBoost demonstrated higher 
accuracy and specificity compared to the preoperative 

Table 3  The evaluation metrics for each model using feature subsets
Model Balanced accuracy Recall Precision F1 score
Decision Tree 79.66%(78.13–89.56%) 85.59%(80.49–97.73%) 49.80%(43.55–66.68%) 62.91%(58.00-77.19%)
SVM 82.83%(75.11–88.61%) 82.64%(65.21–90.63%) 59.71%(48.94–76.09%) 69.24%(58.53–79.67%)
Random Forest 81.09%(81.36–91.42%) 85.12%(84.44–100.00%) 53.03%(46.55–71.15%) 65.31%(62.50-81.08%)
XGBoost 82.54%(78.14–91.04%) 82.21%(67.57–91.90%) 59.61%(54.90–81.40%) 68.93%(53.11–92.55%)
AdaBoost 77.18%(70.12–85.44%) 0.5913(81.36–91.42%) 0.7884(81.36–91.42%) 0.6758(81.36–91.42%)

Fig. 4  The SHAP values about XGBoost
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diagnosis. Furthermore, XGBoost achieves an AUROC of 
94.40%, indicating that this model has superior predictive 
capability over traditional diagnostic methods (Fig. 6).

Model interpretation and on-line app
To better understand the ability of the model as an early 
predictive tool and its clinical application, we demon-
strated the local interpretability of the model by creating 
a force plot. This plot was generated using the SHAP val-
ues in XGBoost and showcased three samples when the 
model made accurate predictions (See Supplementary 
Fig. 4, Additional file 2). We identified the seven best pre-
dictors by XGBoost as WBC, NLR, D-dimer, Gallbladder 
width, Fibrinogen, Gallbladder wallness, Hypokalemia or 
hyponatremia. We labeled the distribution of eigenvalues 

for each group in Table 2 and GC and No-GC are statis-
tically significantly different (p < 0.001). In addition, we 
plotted the statistics data for each variable within the 
specific set of features (See Supplementary Fig. 5, Addi-
tional file 2): the WBC was 3.50–9.50 (10^9/L) in normal 
people, while it was 13.49 [10.13, 17.53] (10^9/L) in the 
GC group and 6.82 [5.30, 9.21] (10^9/L) in the No-GC 
group; About the normal range of NLR Currently, there 
is no reference value for large healthy population samples 
in China, so we used the reference value of 0.4-3.1930 for 
ethnically similar Korean population samples, which was 
13.01 [7.21, 18.70] in the GC group, and 2.56 [1.67, 5.27] 
in the No-GC group; the D-dimer was about 0–1 (ug/
mL) in normal subjects, and 1.02 [0.66, 1.65](ug/mL) in 
the GC group and 0.54 [0.39, 0.77] (ug/mL) in the No-GC 

Table 4  The evaluation metrics for each model using feature subsets on external test set
Model Balanced accuracy Recall Precision F1 score
Decision Tree 83.38%(71.68–92.42%) 85.71%(62.50–100.00%) 40.00%(22.73–58.34%) 54.55%(35.29-70.00%)
SVM 79.92%(67.63–92.28%) 71.43%(44.44–93.77%) 47.62%(25.00-69.23%) 57.14%(33.33–75.57%)
Random Forest 84.43%(72.83–92.86%) 85.71%(64.70–100.00%) 42.86%(25.92-60.00%) 57.14%(37.50-74.42%)
XGBoost 81.50%(68.90–93.50%) 71.43%(44.43–92.86%) 55.56%(30.75-80.00%) 62.50%(37.02–78.79%)
AdaBoost 78.05%(63.99–91.39%) 57.14%(31.25–81.86%) 88.89%(64.27–100.00%) 69.57%(42.11–88.01%)

Fig. 5  The PR curves of each model were used feature subsets on Training, Validation, and Testing sets
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group; Fibrinogen is about 2–4 (g/L) in normal subjects, 
and in this study it was 5.61 [4.28, 7.24] (g/L) in the GC 
group and 3.71 [3.12, 4.52] (g/L) in the No-GC group; 
And Gallbladder width was about 3–5 (cm) in normal 
subjects, 3.30 [2.40, 4.00] (cm) in the GC group, and 3.90 
[3.30, 4.50] (cm) in the No-GC group, all of which were 
within normal limits; Gallbladder wallness was 0.3–0.5 
(cm) in normal subjects, and 0.50 [0.40, 0.60] (cm) in GC 
groups and 0.35 [0.30, 0.50] (cm) in the No-GC group. 
The prevalence of Hypokalemia or hyponatremia was 

87.7% in the GC group and 48.1% in the No-GC group, 
making it 1.82 times higher than in the No-GC group.

In order to enhance accessibility for patients and clini-
cians at different centers, we had transformed the final 
model into a user-friendly predictive on-line app. By 
inputting the values of the aforementioned predictive 
variables, the app could accurately determine the likeli-
hood of having gangrenous cholecystitis. Additionally, 
the contribution of every variable to the prediction out-
come was clearly displayed in Fig. 7 ​(​h​t​t​​p​s​:​​/​/​g​a​​n​g​​r​e​n​​o​u​s​​
-​c​h​o​​l​e​​c​y​s​t​i​t​i​s​-​p​r​e​d​i​c​t​i​o​n​-​m​o​d​e​l​.​s​t​r​e​a​m​l​i​t​.​a​p​p​/​)​.​​

Discussion
We developed a predictive tool for early detection of 
GC by utilizing various ML models and clinically signifi-
cant data obtained from patients at our medical facility. 
Based on the actual data characteristics of missing and 
imbalanced clinical information, we initially performed 
data interpolation and subsequently assessed the models 
using measures such as Balanced accuracy and PR curve, 
which were not influenced by imbalanced data. The 
XGBoost integrated learning model demonstrated the 
highest effectiveness among the five ML models trained 
using low-cost clinical examination methods, and the 
Balanced accuracy on the validation set could reach up 
to 82.54% (95% CI: 78.14-91.04%), and the AUPRC was 
77.98% (95% CI: 64.99- 88.43%), and the prediction abil-
ity was also optimal on the external test set: Balanced 
accuracy was 81.50% (95% CI: 68.90-93.50%) and AUPRC 
was 77.87% (95% CI: 53.11-92.55%). Utilizing SHAP 
values, we employed XGBoost to analyze and extract a 
subset of characteristics, namely WBC, NLR, D-dimer, 
Gallbladder width, Fibrinogen, Gallbladder wallness, 
Hypokalemia or hyponatremia. Additionally, we con-
ducted an interpretability analysis and on-line app based 
on the good performance of XGBoost, we advised users 
to utilize this model to anticipate as soon as possible 
and take surgical intervention measures as soon as pos-
sible. The study showcased that our model is a practical, 
cost-effective, and high-performing AI model for making 
healthcare decisions.

In clinical research, it is inevitable to encounter missing 
and imbalanced data in real-world studies, the deliberate 
omission may result “easy data,” which can lead to biased 
model evaluations. This bias occurs because the model 
tends to select samples from the majority class without 
considering other factors, thus producing overly optimis-
tic predictive scores [28]. Among the numerous current 
studies on risk factors associated with GC, for example, 
Yacoub et al. constructed a logistic regression model that 
considered factors such as sex, WBC count, heart rate, 
Gallbladder wallness, and age, and the model achieved a 
precision of approximately 90% for patients with scores 
higher than 4.5. However, it is important to note that 

Table 5  Various model indicators in preoperative diagnosis and 
XGBoost model

Training Set Test Set
Preop-
erative 
diagnosis

XGBoost Preoperative 
diagnosis

XG-
Boost

Accuracy 65.55% 
(62.54–
69.01%)

83.61% 
(81.38–
85.84%)

82.57% 
(76.15–88.99%)

88.07% 
(81.65–
93.58%)

Sensitivity 51.44% 
(44.83–
58.53%)

87.02% 
(82.52–
91.88%)

92.86% 
(75.00-100.00%)

71.43% 
(45.45–
93.34%)

Specificity 69.81% 
(66.37–
73.15%)

82.58% 
(79.82–
85.48%)

81.05% 
(72.91–88.42%)

90.53% 
(84.54–
95.92%)

AUROC 69.81% 
(56.85–
64.58%)

93.38% 
(91.65–
94.91%)

86.95% 
(78.20–93.30%)

94.40% 
(88.80-
98.39%)

The values were shown as mean (95% confidence interval)

AUROC = area under receiver operating characteristic curve

Fig. 6  The AUROC curve graphically represents the performance of XG-
Boost and preoperative diagnosis. AUROC = area under receiver operating 
characteristic curve
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this study had a small sample size of 245 specimens, with 
only 68 of them being GCs [29]. Wu et al. conducted a 
study with a sample size of 5243 patients, they developed 
a prediction model using four variables: WBC count, 
heart rate, Gallbladder wallness, age and had an AUROC 
of 0.77. However, despite increasing the sample size, the 
study only had 351 cases of GC and did not consider the 
issue of data imbalance [6]. Similarly Mahdi et al. utilized 
the American Society of Anesthesiology (ASA) score, 
temperature, duration of symptoms, WBC, male gender, 
and pericholecystic fluid had an AUC of 0.84 (95% CI: 
0.78–0.90) in a single-center sample of 587 cases. This 
performance was superior to the first two studies men-
tioned, but it still suffered from the limitation that the 
model evaluation metrics may not accurately reflect the 
model’s performance (24.7% GC) [30].

All of the above studies used traditional logistic regres-
sion statistical models, which further compromised the 
accuracy and reliability of evaluating the importance of 
predictor variables and model performance in the pres-
ence of data imbalance. Furthermore, ML diverges from 
classical statistics by prioritizing prediction accuracy 
over hypothesis validation, making it better suited for 
developing predictive diagnostic models. Describing 
complex clinical realities using a limited number of math-
ematical formulas is inherently challenging. ML does not 

make any assumptions about the data and departs from 
the traditional statistical process of validating assump-
tions with p values and using cross-validation to confirm 
the final results [15, 31]. ML may integrate clinical data, 
including text and images, with various data sources like 
genomes to create adaptable models, they can be con-
tinuously enhanced to achieve more precise predicting 
outcomes in the future [32]. In this study, we addressed 
the limitations of a previous study by considering missing 
and imbalanced data, as well as a small sample size, and 
proposed a novel approach using ML models to develop 
an early predictive diagnostic model for GC. We rigor-
ously evaluate the performance of our model, and the 
results from an external test set validate its effectiveness. 
Furthermore, the model exhibits superior performance in 
comparison to preoperative diagnoses made by clinical 
doctors, achieving an AUROC of 94.40% (95% CI: 88.80-
98.39%) as opposed to 86.95% (95% CI: 88.80-98.39%).

Several studies have grouped acute purulent cholecys-
titis with GC as severe cholecystitis in subsequent analy-
ses [33–36], which confirms the view of some researchers 
that purulent cholecystitis is equally “important” as GC 
in some cases, as can be seen from the quartile spacing 
and statistical plots of the previous indicators. The dis-
parity between the GC group and the normal range is 
merely 0.02ug/mL for D-dimer, the distinction between 

Fig. 7  The actual screen of predicting on the on-line app after inputting the true values of feature subset variables. (A) No-GC group, (B) GC group. 
GC = Gangrenous cholecystitis
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Gallbladder width and Gallbladder wallness falls within 
the normal range, despite the presence of a discrepancy 
between the two indicators. This may be due to the pro-
pensity of many patients in the sample to seek medical 
attention within 6  h of symptom onset, during which 
local inflammation has not yet triggered a systemic reac-
tion, and changes in blood tests remain negligible. It is 
evident that in many instances, the performance of the 
two diseases is comparable, leading to confusion and con-
sequently making the diagnosis of GC more challenging. 
Nevertheless, based on our expertise, certain instances 
of purulent cholecystitis can be managed with conserva-
tive approaches involving anti-inflammatory therapies. 
On the other hand, GC always necessitates immediate 
surgical intervention, either through PTGBD or sur-
gery. Among the 1006 patients in this study, there were 
3 cases of malignant deaths during this admission, yield-
ing a mortality rate of about 0.3%, all of which were GC 
without exception. The causes of death were analyzed by 
reviewing the death discussion records, one case was due 
to acute myocardial infarction, and the other two cases 
were multiple organ dysfunction syndrome (MODS) 
resulting from infectious shock. The surgery of the for-
mer was performed on the 13th day after the onset of the 
disease, and the latter two on the 4th and 11th day after 
the onset of the disease, respectively. we analyzed that 
the late surgical intervention might be one of the under-
lying causes of the patients’ deaths. Hence, the diagnostic 
prediction tool developed in this study offers theoretical 
backing for determining the need for surgical interven-
tion in patients with GC, thereby providing significant 
clinical value in terms of minimizing postoperative com-
plications and death rates, and enhancing overall patient 
outcomes. Furthermore, with the clinical applicaiton of 
on-line app, clinicians have the ability to enhance preop-
erative preparation, which includes psychological readi-
ness, and minimize the incidence of surgical incidents.

In the subset of features chosen by those ML models 
in this study, both inflammatory markers such as WBC 
and coagulation system-related markers such as D-dimer 
played a significant role in constructing the predic-
tion models. However, the variables of diabetes mel-
litus and history of coronary artery disease, which have 
been previously identified as independent risk factors 
for GC in other studies, were found to be more preva-
lent in the No-GC group in this study [2, 37]. We attri-
bute this discrepancy to the larger sample size in the 
No-GC group, which resulted in a statistically signifi-
cant difference. Previous studies have demonstrated the 
significance of WBC has in the constructing GC models 
[8, 38, 39], while D-dimer plays a crucial role in the diag-
nosis and treatment of acute abdominal conditions, e.g. 
Hizir et al. discovered that D-dimer had a sensitivity of 
up to 95.7% in detecting nontraumatic abdominal pain 

patients who require surgical intervention [40]; Cayrol 
et al. used D-dimer to predict an AUC of 0.93 for acute 
gangrenous appendicitis in children [41]. There is a lack 
of recorded studies on the relationship between acute 
gangrenous cholecystitis and gangrenous cholecystitis, 
which raises questions about their connection. Many 
studies have confirmed the correlation between inflam-
mation and coagulation [42–44], the interaction between 
many inflammatory factors and coagulation pathways 
forms a comprehensive feedback loop, and the relation-
ship between them is highly intricate. Patients with sep-
sis and COVID-19 disease typically exhibit with elevated 
levels of fibrinogen and D-dimer, along with thrombocy-
topenia [45]. A study by De Simone et al. further revealed 
that the incidence of GC even doubled in patients with 
COVID-19 [46]. Based on the above studies, one might 
hypothesize whether the treatment methodologies for 
these two disorders can be interchanged. Can treatment 
procedures be shared or adapted from one another? Fur-
ther verification in future investigations is required.

This study involves conducting research using authen-
tic clinical data and directly addressing the challenges 
of incomplete and imbalanced clinical information. 
Through addressing these practical obstacles, our objec-
tive is to develop a GC prediction model that is more 
aligned with real-world scenarios. This strategy, which 
utilizes actual patient data, seeks to improve the depend-
ability and flexibility of the model in order to effectively 
handle intricate clinical settings. Hence, our emphasis 
lies not only on the theoretical optimality but also on 
the model’s resilience in handling actual clinical settings. 
Our study focuses on resolving the issue of incomplete 
and imbalanced clinical information. The objective is to 
develop clinical decision support systems that are more 
actionable and practical, so offering physicians more 
trustworthy aid in real clinical practice. It is essential to 
prioritize the safeguarding of patient privacy when utiliz-
ing this paradigm. Medical institutions and researchers 
can implement numerous protective measures, including 
data encryption, access control, user and developer pri-
vacy training, frequent security audits, and strict adher-
ence to applicable laws and regulations to secure patient 
medical data privacy.

This study has several limitations: (1) This study is a 
single-center retrospective study, and it can be seen that 
the model has a certain instability on new data, so it is 
still necessary to repeatedly train the model to enhance 
the stability of the model in the future with multicenter 
prospective studies. (2) The ML models used in this 
study are the prevailing ones. In recent years, deep learn-
ing models, such as the CNN, have demonstrated their 
exceptional performance [47] in classifying imbalanced 
data, it is recommended to construct future experiments 
to evaluate their performance. (3) Due to the limitations 
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of the clinical laboratory system in this clinical center and 
the retrospective cohort study, there may be biases in 
patient collection. We have established clear and specific 
inclusion and exclusion criteria. Ensure that all research 
subjects meet these standards in order to improve sample 
consistency and representativeness. (4) In patients with 
comorbidities that may induce changing aberrations in 
the model, the likelihood of misdiagnosis may escalate 
when employing the model. (5) There may be a bias in the 
collection of effective variables in this model. The vari-
ables of interest in this paper are the affordable and read-
ily available universal indicators in the clinic that have 
been studied before. The model built using these vari-
ables has shown a high level of accuracy, indicating better 
performance. Future studies can consider incorporating 
additional input variables such as the ASA score, periph-
eral fat of gallbladder, mucosal interruption sign in gall-
bladder ultrasound [48]and transient hepatic attenuation 
differences (THADs) [49] in CT arterial phase. This will 
allow for further exploration of clinical features related to 
GC.

Conclusion
In conclusion, our study has successfully developed 
a XGBoost ML model for the early diagnosis of GC, 
achieving high classification accuracy of 81.50% and 
AUROC of 94.40% over traditional diagnostic methods. 
The SHAP value was utilized to interpret the model and 
an convenient on-line predictive app including WBC, 
NLR, D-dimer, Gallbladder width, Fibrinogen, Gallblad-
der wallness, Hypokalemia or hyponatremia was devel-
oped. Overall, our research highlighted the potential of 
ML in advancing early detection strategies for GC, advo-
cating for prompt surgical interventions, and offering 
valuable support to healthcare professionals in optimiz-
ing patient care and outcomes.
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