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Abstract 

Background Early treatment and prevention are the keys to reducing the mortality of VTE in patients with thoracic 
trauma. This study aimed to develop and validate an automatic prediction model based on machine learning for VTE 
risk screening in patients with thoracic trauma.

Methods In this national multicenter retrospective study, the clinical data of chest trauma patients hospitalized in 33 
hospitals in China from October 2020 to September 2021 were collected for model training and testing. The data 
of patients with thoracic trauma at Shanghai Sixth People’s Hospital from October 2021 to September 2022 were 
included for further verification. The performance of the model was measured mainly by the area under the receiver 
operating characteristic curve (AUROC) and the mean accuracy (mAP), and the sensitivity, specificity, positive 
predictive value, and negative predictive value were also measured.

Results A total of 3116 patients were included in the training and validation of the model. External validation 
was performed in 408 patients. The random forest (RF) model was selected as the final model, with an AUROC 
of 0·879 (95% CI 0·856–0·902) in the test dataset. In the external validation, the AUROC was 0.83 (95% CI 0.794–0.866), 
the specificity was 0.756 (95% CI 0.713–0.799), the sensitivity was 0.821 (95% CI 0.692–0.923), the negative predictive 
value was 0.976 (95% CI 0.958–0.993), and the positive likelihood ratio was 3.364.

Conclusions This model can be used to quickly screen for the risk of VTE in patients with thoracic trauma. More 
than 90% of unnecessary VTE tests can be avoided, which can help clinicians target interventions to high-risk 
groups and ensure resource optimization. Although further validation and improvement are needed, this study 
has considerable clinical value.
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Introduction
Venous thromboembolism (VTE) includes pulmonary 
thromboembolism (PE) and deep venous thromboem-
bolism (DVT). The incidence of VTE among hospital-
ized patients in the United States ranges from 10–40%, 
and up to 60% of surgical patients are at intermediate 
or high risk for VTE [1, 2]. The incidence of VTE ranges 
from 7 to 53%, depending on the type of disease, and 
survivors also have varying degrees of sequelae. [2–4] 
According to different reports, the mortality rate of 
DVT ranges from 2·6 to 19·6%, [2, 5] and the mortality 
rate of PE ranges from 5·2 to 19·6% [2, 6]. VTE is one 
of the most important fatal complications in trauma 
patients [7, 8], and it is one of the leading causes of 
death in trauma patients who survive beyond the first 
day [9]. The incidence of VTE in patients with trauma 
ranges from 11·8–65% [9]. The incidence of VTE can 
reach 40–80% in patients with severe or multiple trau-
mas who do not receive thromboprophylaxis [7, 10]. It 
poses great clinical risk and financial burden to patients 
and medical institutions. [11]

Unlike the traditional view that PE is secondary to 
DVT in the past, PE and DVT in patients with thoracic 
trauma are independent clinical events [12, 13]. There-
fore, identifying high-risk individuals before further 
examination to make personalized prevention, diagnosis, 
and treatment decisions is urgently needed by thoracic 
surgeons [14, 15]. In our previous literature search, we 
found that there was no targeted prediction model for 
VTE in patients with thoracic trauma, and there was a 
lack of efficient prediction methods. (eText1, eFig1).

Materials and methods
This study was approved by the Ethics Committee 
of the Third Hospital of Shijiazhuang (2021) Ethical 
Approval No. 047 and was reviewed by all participating 
institutions.

Subjects
The clinical data of 5774 patients with thoracic trauma 
treated at 33 tertiary or secondary medical institutions in 
China from October 2020 to September 2021 were col-
lected. After screening according to the inclusion and 
exclusion criteria, 3116 patients were included in this 
study. In addition, we enrolled 474 patients with tho-
racic trauma in a single center at six hospitals in Shang-
hai from October 2021 to September 2022. Among these 
patients, 408 patients who met the inclusion criteria were 
used for external validation. All the participants provided 
written informed consent. The inclusion and exclusion 
criteria were as follows:

Inclusion criteria
(1) 25–80  years old, admitted within 3  days after chest 
trauma; (2) for patients with thoracic trauma combined 
with other injuries, the abbreviated injury score (AIS) 
was defined as AIS ≥ 3 for thoracic injury and AIS ≤ 3 for 
other injury sites independently.

Exclusion criteria were as follows
(1) received preventive physical or chemical anticoagula-
tion therapy before admission; (2) VTE occurred before 
admission; and (3) except for thoracic injury, the other 
injury sites had an independent AIS score > 3. (4) Incom-
plete case data. (5) Written informed consent was not 
provided.

Main prediction results and diagnostic methods
The primary outcome was in-hospital VTE, including 
DVT confirmed via deep vein ultrasonography and PE 
confirmed via CTPA [16]. DVT was routinely detected, 
and PE was selectively detected.

Development of machine learning models
The development process of the model is shown in Fig. 1, 
which is divided into the following steps:

Data collection and sorting
All the data were collected and managed via the desig-
nated chest trauma cloud database. All analyses were 
performed via R Studio (version 4.2.2) and Python (ver-
sion 3.9.0).

A total of 25 clinical data and epidemiological char-
acteristics of patients with thoracic trauma [14, 16–19], 
including sex, age, body mass index (BMI), number of 
broken ends of rib fractures, treatment methods, surgical 
treatment plans, underlying diseases, and complications, 
were recorded. (eTable 1).

Selection of related factors
The development of the machine learning model began 
with the Python-based BorutaShap algorithm (eMethod 
1) for feature selection [20–22]. Only the influencing fac-
tors screened from the feature selection were included in 
the final machine learning model.

Sample size calculation and data segmentation
At present, there is no perfect sample size calculation rule 
for the training and validation of machine learning mod-
els [23, 24]. Generally, the research data are divided into 
a training set, test set, and external validation set = 3:1:1. 
In this study, the sample size calculation method of Riley 
et al. [25] was used to calculate the minimum sample size 
of the training set and the external validation set in three 
steps (eMethod 2; eFig2; eFig3).
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Model training and verification
Five machine learning models were trained [26, 27]: 
logistic regression (LR) [28, 29], random forest (RF) 
[30], support vector machine (SVM) [31], multilayer 
perceptron (MLP) [32], and gradient boosting machine 
(GBM) [33]. The synthetic minority oversampling tech-
nique (SMOTE) was used to address imbalanced data 
in the training set [34]. The test set was used to validate 
the five models to further screen out the best-perform-
ing machine learning model. To ensure the fairness of 
the comparison, algorithms that had advantages in 
some training processes received corresponding weak-
ening adjustments. The logistic regression model was 
trained on the basis of the Akaike information crite-
rion and reverse feature method. To adjust the hyper-
parameters of the RF, SVM, MLP, and GBM models, 
we defined a hyperparameter space for each model and 
performed a grid search and triple cross-validation in 
the training set. The hyperparameters that yielded the 
highest area under the receiver operating characteris-
tic curve (AUROC) for each model during validation 
were selected and fixed for subsequent model testing. 
The outcome measures included the AUROC for each 
model and the mean accuracy (mAP) of the model, as 
well as the sensitivity, specificity, positive predictive 
values, and negative predictive values. The mAP was 
defined as the average precision over all the recall rates 
and was equal to the area under the precision‒recall 
curve in the current study. The bootstrap method was 
used to calculate the 95% confidence interval (CI) and 

compare the AUROC and average accuracy curves. The 
best-performing model was subjected to operation-
point analysis with the highest Youden index as the 
operating point of the ROC curve. The AgrestiCoull 
method was used to calculate 95% confidence intervals 
(CIs) for the sensitivity, specificity, and positive and 
negative predictive values [35]. Differences in sensitiv-
ity and specificity were analyzed via McNemar’s chi-
square test, and differences in predictive values were 
analyzed via generalized score statistics [36]. The Shap-
ley additive explanatory value (SHAP value) is used to 
measure the contribution of each feature to the model 
output. [37]The output probabilities were calibrated via 
the Platt scale, and a calibration curve was drawn. To 
assess the net clinical benefit of different thresholds, 
we performed a decision curve analysis. [38, 39]As the 
actual risk of VTE in the screened population was low, 
the use of the polygenic risk score (PRS) instead of the 
actual risk of VTE is more conducive to further analysis 
[40]. The PRS reflects the estimated actual risk via the 
following formula:

Finally, an external validation set was used to validate 
the performance of the optimal prediction model. In 
the above procedures, all tests were two-sided, and p 
values less than 0 · 05 were considered to indicate sig-
nificant differences.

Estimated actualrisk =
exp (6 · 37× PRS − 6 · 41)

1+ exp (6 · 37× PRS − 6 · 41)

Fig. 1 Flowchart of the study and data analyses
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Construction of the visual web program
The research team constructed a visualization proce-
dure (eMethod 3; eFig. 4; eFig. 5) for the model on the 
basis of the gap value and PRS of the model.

Results
Selection of the main prediction results
Among the 3116 patients with thoracic trauma 
included in the analysis, there were 190 cases of VTE, 
with an incidence of approximately 6 · 1%, including 
183 cases of DVT and 17 cases of PE, seven of which 
were found to have PE without DVT. There were 37 
VTE cases in the external validation set of 408 cases, 
with an incidence of 9·1%, including 41 cases of DVT 
and three cases of PE, of which two cases of PE were 
detected without DVT. Because the sample size and 
incidence of PE cases were much lower than those of 
DVT cases, VTE was used as the only main prediction 
result.

Feature selection
Twelve related factors were selected: age, BMI, number 
of broken ends of rib fracture, rib fracture surgery, 
multiple traumas, lower limb fracture, tracheal 

intubation, blood transfusion, D-D 24  h, PT 24  h, Plt 
24 h, and Hb 24 h.

Machine learning model training and screening
Segmentation of data
The study population was divided into a training group 
(before) and a test group (after), with June 30, 2021, as 
the cutoff. A ratio of 3:1 was used to divide the 2337 sam-
ples before June 30, 2021, into the training set and 779 
samples after June 30, 2021, into the test set. The sam-
ple size of the training set used in this study was signifi-
cantly larger than the minimum calculated sample size 
(eMethod 2; eFig 2). eTable  2 shows the baseline data 
after variable screening and grouping.

Machine learning model training performance
All the models performed well in the training set, and the 
performances of all the parameters of the training and 
test sets are shown in Table 1.

External verification
Data from 408 patients with chest trauma who met the 
inclusion criteria were included in an external validation 
set to further verify the performance of the RF prediction 
model (Table  2). Compared with the test dataset, the 
RF model also had similar AUROCs (0·83, 95% CI 

Table 1 Prediction performance of the machine learning models in the training and testing sets

RF (0·879, 95% CI 0·856–0·902) had the best curve performance. In terms of the negative predictive rate and mAP, the RF (npv = 0·996 95% CI 0·99–1·0, mAP = 0·717) 
also achieves the best performance. The ROC curve (Fig. 2. A), precision‒recall curve (Fig. 2. B), calibration curve (Fig. 2. C), and DCA decision curve (Fig. 2. D) for all the 
candidate models in the test set are shown in Fig. 2. On the basis of these results, RF was selected as the final model for subsequent external validation

Model LR RF SVM MLP GBM

Train_auc 0.798 0.997 1 0.757 0.843

Test_auc 0.815 0.879 0.739 0.728 0.838

auc_ci (0.788,0.842) (0.856,0.902) (0.708,0.77) (0.697,0.759) (0.812,0.864)

Specificity 0.734 0.687 0.589 0.684 0.899

Specificity_ci (0.702,0.766) (0.653,0.721) (0.553,0.624) (0.65,0.718) (0.877,0.92)

Sensitivity 0.8 0.956 0.822 0.756 0.644

Sensitivity_ci (0.689,0.911) (0.889,1.0) (0.711,0.933) (0.622,0.867) (0.511,0.778)

F1 0.261 0.27 0.193 0.219 0.392

Youden
Index

0.534 0.642 0.411 0.439 0.544

MCC 0.273 0.314 0.193 0.216 0.374

Kappa 0.182 0.19 0.101 0.133 0.339

npv 0.984 0.996 0.982 0.979 0.976

npv_ci (0.973,0.993) (0.99,1.0) (0.968,0.993) (0.965,0.99) (0.964,0.987)

ppv 0.156 0.158 0.109 0.128 0.282

Ppv_ci (0.113,0.203) (0.117,0.201) (0.077,0.145) (0.09,0.169) (0.194,0.369)

plr 3.011 3.049 1.998 2.39 6.392

nlr 0.272 0.065 0.302 0.357 0.395

mAP 0.597 0.717 0.636 0.565 0.64
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0·794–0·866) and mAPs (0·688) in the external validation 
dataset.

We analyzed the relative influence of the 12 features on 
the model output according to the mean absolute SHAP 
values (Fig. 3A). In addition, to further clarify the influ-
ence of different features on the model output, we plotted 
the prediction plots of negative and positive correlations 
(Fig. 3B).

Discussion
This study has the advantages of being a multicenter 
study with a large sample size and can better reflect the 
incidence of VTE in patients with thoracic trauma dur-
ing hospitalization in most parts of China. The use of 
machine learning algorithms can ensure the rigor of 
research to the greatest extent possible and improve the 
accuracy and generalizability of prediction models. [26, 
27]

In this model, the excluded features had little influence 
on the final prediction results, and if they were included 
together, the model would overfit [27]. Brain trauma, spi-
nal fracture, pelvic fracture, abdominal injury, upper limb 
fracture, and surgery in other departments are known 
risk factors for VTE [18, 41], but they did not have a sig-
nificant influence in this study. Only patients with simple 
thoracic trauma and severe thoracic trauma (independent 
AIS score ≥ 3) and patients with mild trauma (independ-
ent AIS score ≤ 3) were included in this study. Therefore, 
injuries to other parts of the body with minor injuries 
and surgeries had an insufficient influence on the final 

prediction results of the model and were not included in 
this model. Among the 12 features included in the model, 
the influence of different features on the final prediction 
results is shown in Fig.  3. Lower limb fracture, Hb24h, 
age, BMI, and the number of broken ends of the rib frac-
ture had the highest correlation with the final prediction 
result. Tracheal intubation, PT24h, blood transfusion, 
D-D24h, multiple traumas, Plt24h, and rib surgery were 
also strongly correlated with the final prediction.

Lower extremity fracture, age, BMI, tracheal intuba-
tion, PT24h, D-D24h, and multiple traumas were posi-
tively correlated with VTE. Hb24h and Plt24h levels 
were negatively correlated with the occurrence of VTE, 
and blood transfusion was positively correlated with the 
occurrence of VTE. These results are consistent with pre-
vious findings (eText 2). [7, 18, 41–44]

The number of broken ends of rib fractures had a con-
siderable influence on the final prediction results. In 
addition to the common risk factors for trauma, patients 
with thoracic trauma have their own characteristics [11, 
14, 45]. Rib fracture, hemopneumothorax, pulmonary 
contusion directly caused by trauma, pneumonia, acute 
respiratory distress syndrome (ARDS), and respiratory 
failure indirectly caused by trauma are all risk factors for 
VTE, which may be caused by fractures, chest strap fixa-
tion, and prolonged bed rest [8, 41, 46, 47]. Patients with 
chest trauma, especially those with multiple rib frac-
tures or flail chests, have limited breathing, poor sputum 
excretion, and an increased risk of respiratory infections. 
[46–48]

In the screening process of the machine learning 
models, the RF model showed obvious advantages 
over the other machine learning models in terms of 
the ROC curve, P-R curve, calibration curve, and DCA 
curve (Fig. 2). The highest AUC (0.879) and mAP (0.44) 
indicated that the RF model had the highest accuracy 
[27]. As shown in the calibration curve, the RF model had 
the highest degree of calibration. In the DCA curve, the 
RF model also showed the greatest net benefit, indicating 
that the RF model has the highest clinical value while 
meeting the actual needs of clinical decision-making 
[38]. When the incidence is low, the RF model has greater 
accuracy and clinical value. The overall incidence of 
VTE in this study (6·1%) was low and consistent with the 
incidence of VTE observed in clinical practice. [1, 2]

Trauma patients, especially those with multiple inju-
ries, are critically ill and have poor underlying conditions 
[49]. Unnecessary examinations and transportation often 
result in unnecessary economic burdens and clinical risks 
to patients. In this study, a machine learning model was 
used to automatically generate an objective PRS score by 
inputting easily available hospitalization data and epide-
miological information of hospitalized patients, which 

Table 2 Comparison of the results of the test set with those of 
the external verification set

RF Test set External verification set

Test_auc 0.879 0.83

auc_ci (0.856,0.902) (0.794,0.866)

Specificity 0.687 0.756

Specificity_ci (0.653,0.721) (0.713,0.799)

Sensitivity 0.956 0.821

Sensitivity_ci (0.889,1.0) (0.692,0.923)

F1 0.27 0.398

Youden Index 0.642 0.577

MCC 0.314 0.37

Kappa 0.19 0.295

npv 0.996 0.976

npv_ci (0.99,1.0) (0.958,0.993)

ppv 0.158 0.262

Ppv_ci (0.117,0.201) (0.189,0.344)

plr 3.049 3.364

nlr 0.065 0.237

mAP 0.717 0.688
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Fig. 2 Receiver operating characteristic curve (A), precision‒recall curve (B), calibration curve (C), and decision curve (D)

Fig. 3 Mean SHAP value (A), SHAP value (B)
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effectively removed subjective factors in clinical VTE 
screening. The negative predictive value was 0.976 (95% 
CI 0.958–0.993). This means that approximately 97·6% 
of patients with thoracic trauma can avoid unnecessary 
transport and invasive tests when the model is used to 
predict the probability of VTE.

Notably, although rib fracture surgery was positively 
associated with VTE in this study, it had a relatively 
weak effect. Figure  3(B) shows that not undergoing rib 
surgery had little effect on the occurrence of VTE, but 
the patient population that underwent surgery had 
both positive and negative effects. This may be due to 
the large differences in the degree of rib fracture in the 
patients with thoracic trauma included in this study and 
the different indications for rib surgery at each center. 
Recent studies have shown that rib surgery may have a 
protective effect on pulmonary complications and VTE 
in patients with severe rib fractures [47, 48, 50]. Studies 
have also reported that the incidence of VTE in patients 
who undergo surgery as soon as possible may be lower 
than that in delayed surgery patients [16]. This study 
could not determine whether rib surgery had a protective 
effect on VTE in patients at this time, which requires 
more targeted and standardized research.

This study had several limitations. First, the incidence 
of VTE in patients with thoracic trauma in this study was 
lower than that reported in other studies [51]. Because 
of the differences in physicians’ clinical experience and 
because many asymptomatic PE cases occur without sig-
nificant clinical manifestations, data from many patients 
with PE were not included in the study [12, 52]. In addi-
tion, only patients admitted within three days after 
trauma were included in this study. In a study of patients 
with acute trauma, up to 62% of VTE cases were reported 
after hospital discharge.8 This study also had problems 
such as insufficient sample size, imperfect inclusion and 
exclusion criteria, incomplete long-term follow-up, insuf-
ficient data homogeneity, and an insufficient external 
validation set. Further multicenter studies with larger 
sample sizes and improved internal and external consist-
ency are needed. In addition, the fully automated clinical 
screening model developed in this study will require fur-
ther regulatory review and approval to evaluate its per-
formance, potential risks, and benefits for broad clinical 
applications.

In conclusion, we developed and tested a machine 
learning model to predict the probability of VTE in 
patients with thoracic trauma during the periopera-
tive period. This convenient and automated screening 
method showed comparable diagnostic performance 
and prevented 97·6% of unnecessary lower-extremity 
vascular ultrasound or CTPA screening. The results 
of our study have the advantages of noninvasive 

examination, convenience, and high efficiency, which 
can significantly improve the efficiency of VTE preven-
tion and treatment in patients with thoracic trauma 
and pave the way for better optimization of medical 
resources.
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